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Pressure effects for crystal growth in a closed system
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We analyze the growth of a crystal from its supercooled liquid iclaseddomain(constrained growth
taking into account the effects due to the different densitiemndp, of the solid and liquid phases. We assume
P> ps 1-€., the liquid expands upon solidification. Then, the growth is contrasted by an increasing pressure,
which results in a continuous decrease of the coexistence temperature and the effective supercooling. These
phenomena have been simulated in two dimensions through a modified version of the classic phase-field
model. We observe that for spherical growth the interface temperature reflects almost instantaneously the
change of the coexistence temperature. For dendritic growth, we observed a relaxation time for the dendrite tip
velocity and the tip radius which is comparable to the characteristic time of the process; however, after the first
fast transient, the growth dynamics seems to follow the changing pressure with no appreciable lag. The onset
of the morphological instability is slightly anticipated in respect to free growth.
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I. INTRODUCTION In this paper we address the growth of a crystal in a
closedsystem, using a modified version of the phase-field
Solidification from a supercooled melt is generally ad-model [8], which takes into account the hydrodynamic and
dressed as a diffusion controlled process, as the latent heafastic corrections to the classic diffusive problem. The
released at the solid-liquid interface must be rejected awayhodel is a refinement of a previous approdé, with a
from the advancing fronftl]. In this sense, the only external more consistent derivation of the thermodynamic potential,
parameter available to control the process is the supercoolingnd incorporates also ideas proposed by Caginalp and Jones
imposed at infinityA =C(Ty—T..)/Lo, whereC is the specific  [10], Oxtoby[11], Andersoret al.[12], and Tonget al. [13)].
heat, Ty represents the coexistence temperature of the solitVe assumep,> p,, i.e., the liquid expands upon solidifica-
and liquid phases anid, the latent heat per unit mass. This tion. The aim of our investigation is to characterize the in-
picture is valid, to a first approximation, in absence of buoy-terplay between thegfasf) relaxation of the mechanical
ancy effectdi.e., in a microgravity environmen{2]. How-  modes and thé&slow) relaxation of the thermal field. The
ever, even in this case, the volume change in solidification isnodel has been solved numerically in two dimensions to
the source of a richer phenomenology, which deserves furdescribe the spherical growth of a solid nucleus, with isotro-
ther investigation. In this perspective, some experimental inpic and anisotropic surface tension. In the first case we ob-
vestigations stressed the role of pressure as a possible conteglrve that during the growth, the interface temperature can be
variable in solidification experiments. The melting tempera-well approximated through the Clapeyron's equation, with
ture changes with pressure according to the Clapeyron equéhe usual capillary and kinetic corrections. This indicates that
tion; then pressure variations during solidification allow theeven in presence of strong elastic transients, the interface
researcher to control in a rapid and uniform way the actuakinetics is essentially driven by the average pressure inside
supercooling of the melt3,4]. It has also been shown that the system. Along the growth, due to the morphological in-
the frequency of dendritic side-branching can be tuned bytability, the crystal loses its spherical shdpid]. We ob-
periodic pressure variations, to induce a regularization of theerved that in respect to nonconstrained growth, the onset of
growth pattern5,6]. this instability is slightly anticipated. With anisotropic sur-
The Clapeyron’s effect can play also a role for solidifica-face tension, the solid seed develops into the well known
tion in a closed system, i.e., at constant volume. Whenps  needle crystalor free dendritg As shown by lvantsoy15],
(contraction tensile stresses eventually result in the forma-the purely diffusive solution is a shape-preserving parabola
tion of cavities, where the pressure level is fixed by the localvhich moves at constant velocity. The Peclet number, i.e.,
vapor pressure; whep > ps the liquid expands upon solidi- the product of the tip radiuR;, and the tip velocityvy, is
fication, and the pressure increases with time due to the memiquely fixed by the supercooliny. Our numerical simu-
chanical constraint of the domain’s walls. The latter caselations show that in a closed system the increasing pressure
typical for water, is of central relevance in geological pro-alters significantly the growth dynamics, destroying the
cesses. Moreover, recent experiments on the melting and seteady regime; to follow the decreasing supercooling, the
lidification of nanoscale crystals, encapsulated in fullerenePeclet number changes with time. We observed that the re-
like graphitic shells, put into evidence significant alterationslaxation time for this phenomenon is comparable to the char-
of the phase-change dynamics; the overpressure due to theteristic time of the process; however, after the first fast
carbon shell seems to be responsible of some of these effedtansient, the growth dynamics seems to follow the changing
[7]. pressure with no appreciable lag.
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Il. THE EQUATIONS OF THE MODEL

. . . . arameters.
The governing equations of the model are derived in fuIIp

details in Ref.[8]. The order parametep takes the values Parameter

TABLE |. Material properties utilized to evaluate the model

¢=0 in the solid andp=1 in the liquid. The solid phase is Value

modelled as an isotropic fluid with large viscosity. We indi- p;o 8.040x 1¢° Kg m™3
cate withTo, Po, psos pio the temperature, pressure, solid, and 2.93x 10° JKg?
liquid density, respectively, in an equilibrium reference stateT 1.728% 10° K

The equilibrium densitypy(¢) is assumed to change in the 4445 1P JKg K
interfacial region aspo= po($)=psx*P(#)(pio—ps), Where 1.54x 1075 m2 L

the functionp(¢)=¢*(10- 156+ 6¢?) is monotonic and in- ' -,
creasing withg, taking the valuep(0)=0, p(1)=1. Anon- 7 0.8 ‘]_T .
dimensional form of the model equations is obtained adopt# 2.62 m S°K

ing a reference lengthand scaling time to=¢2/D (Disthe K 5.56x 107+ m3 J*
thermal diffusivity). Density is scaled ag/p,; and a nondi-  7=¢ 1.30x10°° Jsmm?
mensional temperature is introduced asC(T-Ty)/L,.

Specific energies will be scaled mé wherevy=§&/ 7, and the

scale for pressure and the components of the stress tensor is L o=TL.= R\ ﬂ( duy 5
p,ovg. Notice that in the following we neglect thermal expan- xy = Ilyx=RaA(¢) ay  ax ) (5)

sion effects; moreover equal values in both phases are as- _ _
sumed for the specific heat, the thermal diffusivity and theln the above equations the parameters are defined as

isothermal compressibility.
Then, the model equations read

dp -

—==pV -7,

a VY

»

p— =V (T+II

P at (T+1D),
du d¢

! — 2 i R~
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R4: l 21 R5:_g! R7: l 21 (6)
3) P10V Uo TPV

where vy is the surface tensiorh is the interface thickness,
and dy=(yCTp)/(poL3) is the capillary length. Moreovey

is the kinetic supercooling coefficient that relates the inter-
face supercooling to the interface velocity through v,
=u(Ty—T); kis the isothermal compressibility ang, ¢, rep-
resent the first and second viscosity in the liquid. The func-
tion g(¢)=(1/4¢*(1-¢)?> is the classic double-well
Landau-Ginzburg contribution to the free energy. Anisotropy

(4) of the surface energy is accounted for through the function

7(0)=(1+w cos &), where 6 is defined as the angle be-

where T and II indicate, respectively, the capillary and tween the normal to the interface and a fixed directionxthe

the viscous stress tensor, which components are

R1Rs3 (p — po)

Tux=~Po~ m . + Ropj, + Rebf,
R1R3 (P Po)
Tyy:_pO m P +Rop X+R3¢X1

Txy = Tyx == Rszpy - R3¢’x¢y1

4dvy 2(91)) >

A —J+RV -0,

=Ry (¢)(3 ax 3y 7V v
4(9v 26vx> .

IT,, = R4 - Y -8 ,
oo (d))(S dy 39X 7Y

axis in our calculations, an@d specifies the intensity of the
anisotropy. The functioi(¢) describes the transition of the
system’s viscosity across the interface. In the bulk solid we
assumedz,,=10°7,. To allow a complete relaxation of the
order parameter towards the stable solid phase in a reason-
able time, we defined\(¢)=7s/ 7+a(p)(1—7/ 7) with
q(¢)=1 for ¢=0 andq(¢)=0 for ¢=0. Table | summarizes
the values of the thermophysical properties we used to esti-
mate the model parameters; notice that we referred to the
phase diagram and to the elastic properties of nickel. The
interface thickness has been chosen has30x 1078 cm.
Choosing arfarbitrary) length scalg=2x 104 cm, we have

the following values of the parametera=265, m=0.1,"¢€
=1.5x 103, R;=3.53x10°, R,=R;=1.07x102, R,=R;
=0.105, Rs=4.94x 10°. The density ratio is chosen &
=0.85.
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IIl. NUMERICAL RESULTS 1.80

Equationgl)—(4) have been solved on a computational
domain Osx<x,, 0=<y=<y,, with impermeable boundary
conditions. Time integration was exploited through an ex- 135
plicit scheme except for the momentum equations, in which,
due to the large viscosity of the solid phase, we were forced
to employ an implicit scheme. Second order central differ-
ences were used for the Laplace operator, and upwind differ™
ences for the convective terms. The grid spacing was se
lected asAx=Ay=¢, the time step required for numerical
stability is At=0.36x 1075, Following a standard method in 045
computational fluid dynamics, the velocity fieldgv, were
solved on two computational grids shifted&%/2 andAy/2
in respect to the one used for the scalar fields. 0.00

0.00 0.45 0.90 135 1.80
A. Spherical growth (a)

Let us first consider the isotropic growttw=0) of a
spherical nucleus. We choosg=y,,=1.8. Initially, the uni-
form supercooled melfA=0.7) is at rest(¢=1,p=1,v4
=0,0y=0,u=-A); then a circular solid seet)=0,p=S,u
=0) is nucleated, with center at=x,/2, y=y/2 and a su-
percritical radiusR;=0.012. Here and in the following the
numerical results will be reported in nondimensional units.
For the reader’s convenience we recall that the length scale i, o0
2Xx10“cm, the velocity scale 7.7010° cm st and the
time scale 2.5&107s. The pressure scale is 4.77
X 10° Pa.

In the first stage of the growth surface tension effects
prevail, and the crystal preserves a circular shape; then, afte
the onset of the morphological instability, the spherical sym-
metry is destroyed. Figuregd—1(c) show the pressure field 0.00
in the liquid at three different times. The first picture shows 00 043 0% 1 180
the sharp pressure step around the crygted white spot at %
the center of the graphdue to the sudden expansion of the 180
solidified melt. Then the pressure wave reaches the domain’
boundaries, where it is reflected and redirected towards the
crystal [Figs.Xb) and Xc). The sequence of the pictures |,
shows that the average pressure increases with time, as ar
volume change of the system is prevented by the imperme
able walls. Then, as predicted by the Clapeyron’s equation
we expect a drop of the effective supercooling along thes **
growth. This effect is evidenced in Fig. 2 where the growth
rate is represented versus time. For comparison we show als
the data obtained with an identical system, wigrmeable 045
boundary conditions. In a first stage the two curves coincide
(until the reflected wave impinges on the crystal's surface
Then the growth rate in free conditions approaches asymp g

700.0

3120

totically a constant value. For constrained growth, on the 0.00 0.45 0.90 135 180

contrary, we see the continuous slowing of the process, dutc) x

to the decrease of the thermodynamic force available for so-

lidification. FIG. 1. The pressure wave originated at the solid-liquid inter-

To better understand the extent of this effect, we observ&ce, at times 115 10°° (a), 2.52x10°° (b), and 2.5210°® (0).
that the Clapeyron’s equation, in nondimensional form, mayNotice the increase with time of the average pressure.
be written as

~ RiR 1
S-11 —p.) =18 -
4= 75 RP R ) PRy [1+xs(8—1) 1]’ ®
@ 3

whereu,, the shift of the coexistence temperature, is relatedvherexs is the actual solid fraction. We recall also that for a
to the pressure shiffp—py). The latter, averaged over the solid-liquid interface with curvature, the equilibrium tem-
entire system, may be estimated as perature shift, due to the Gibbs-Thomson effect, is
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FIG. 2. The growth rate versus time for spherical growth in an  FIG. 4. The difference between the gyration radius of the crystal

open and a closed system. and the average radil,, versusR,,. The two curves show that for
constrained growth the loss of spherical symmetry is slightly antici-
K pated with respect to free growth.
UK == - (9)
6V2a

until R<R*, when the crystal begins to lose its sphericity. A
Figure 3 shows, versus time, the interface temperature &mple indicator for the deviations of the crystal from the
obtained through the numerical simulation, compared witheircular shape may be constructed considering the first and

the contributionsu,. andu,,+u,. the second moment of its radius, i.e., the average raliys
We observe that the numerical solution agrees to a quit@nd the gyration rati®,. The differenceRy,,—R,, vanishes
good extent with the pressure plus curvature shifts obtainefpr @ symmetric disk and increases when the circular sym-
using the actual solid fraction and the curvature of the crysmetry is lost. We estimated the average radius Rag
tal. This means that the interface temperature follows almost VAso/ 7, With Agy indicating the total area of the solidified
instantaneously the change of the actual supercooling. mass. Indeed, Fig. 4 shows that this difference, represented
For the free growth of a spherical nucleus, the lineaversusR,, first diminishes, traverses a minimum and then,
analysis of Mullins and Sekera4] can determine the larg- after the onset of the instability, increases with increasing the
est radiusR=R* of the crystal which still corresponds to a Size of the crystal. The position of the minimum can be as-
stable symmetric growth. An interesting question is whethesumed as a reasonable estimationRefR". We observe in
the onset of the morphological instability is altered in athe figure that for constrained growth the onset of the insta-
closed system. To estima® we observe that, due to the bility is slightly anticipated with respect to free growth. This
finite spacing of the grid, the symmetry of the crystal is very€effect is consistent with the results of a previous investiga-
poor in the early stage of the growth, and improves with timetion [16] which pointed out that the stability of the growth

increases with increasing the effective supercooling.
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FIG. 3. Interface temperature versus time for spherical growth.
The numerical solution is compared with the pressure and curvature FIG. 5. Dendritic growth. Tip velocity versus time in a open and
corrections to the coexistence temperature. a closed system.
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FIG. 6. Dendritic growth. Tip radius versus time in a open and a

FIG. 8. Dendritic growth. Tip velocity versus time before and
closed system.

after the step variation of the external pressure, which occurs at

time t=0.02.
B. The needle crystal

Another set of experiments, with=0.03 andA=0.7, is  dynamics, adapting instantaneously to the variation of the
concerned with dendritic growth. We set a circular seed ceneffective supercooling™. In Fig. 7 we show the decrease of
tered atx=0, y=y,,,/2, with a supercritical radiuR,=0.012.  the Peclet number along the growtsolid line), reflecting
After the onset of the morphological instability, the patternthe decrease of the effective supercooling. On the same
selected by the system is a needle crystal propagating alor@japh we superimposediamonds some values of the Pe-
the x axis. Figures 5 and 6 show, versus time, the velocityclet number obtained fosteadygrowth in an open system,
and the radius of the dendrite tip. We observe, for an opeivith values of the supercooling corresponding to the in-
system, the well-known steady regime. On the contrary, in &tantaneous values df. We observe that the steady values
closed system the growth is characterized by a continuousf the Peclet number represent a good approximation to the
decrease of the effective supercoolii¢=A+u,, so that the dynamic evolution of the process except for the first fast
tip velocity decreases with time and the tip radius increasedransient(notice that we were not able to obtain steady solu-
According to the Ivantsov’s analysis, steadyconditions the  tions with A<0.55).

Peclet number, defined @=0.5Ry,vyp), should only de- To get some insight into this issue, we planned a different
pend on the melt supercooling. An interesting question i€Xperiment. During the free growth of a needle crystal, after

whether in a closed system the growth follows a quasisteadtpe steady regime was achieved, we impressed a step varia-
tion of the external pressurgrom p=0 to p=1200. The

transition of the system towards the new regime is shown in

oo L Figs. 8 and 9, where the tip velocity and the tip radius are
0.03
0.30 |-
2
S il 002 WW
g™ A \f W
& w ]
g Y
0.10 |- .‘é‘
0.01
0.00 L . L . L . L
0.00 0.01 0.02 0.03 0.04
time
FIG. 7. Dendritic growth. The Peclet number versus tiielid 0% o ' v ' v ' e ' 008
line). The diamonds represent the Peclet number obtained for stead time
growth in a open system, with values of the supercoolingorre-
sponding to the instantaneous values of the actual supercabling FIG. 9. Dendritic growth. Tip radius versus time before and
From left to right these correspond to A after the step variation of the external pressure, which occurs at
=0.675,0.650,0.625,0.600,0.575,0.550. time t=0.02.
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represented versus time. We observe that the transition is notanner. The melting temperature shift driven by the pressure
instantaneous, and takes a time of the ordeAbf0.02.  change along the growth reduces the thermodynamic force
This lag, at least in our cageolidification far from equilib-  available for solidification. The interface temperature
rium), is not irrelevant with respect to the time scale of thechanges with time, and may be evaluated with a good accu-
growth process, and in a fast transient we are not allowed tgacy through the Clapeyron equation and the curvature cor-
decouple the growth dynamics from the pressure change. fection. The onset of the morphological instability, for a
is worth to notice that the time scale we observed for thespnerical crystal, is slightly anticipated with respect to free
relaxation of the system is in qualitative agreement with theyrowth, In dendritic solidification the melting temperature
numgncal and experlmenfcal results obtained b)_/ BOrzsonyl it destroys the steady regime, and the tip radius and ve-
[5.6] in the frequencydomain. These authors studied the dy- 4. change with time. We observed that the relaxation time
namic response of dendritic solidification to periodic pres- or this phenomenon is comparable to the characteristic time

sure variations, focussing their attention on GO f the process, and consistent with the results of previous
side branches. A resonance behavior was detected at frequeilq\-/esti ations conducted in the frequency domain. However
cies of the order of ~100; at frequencies larger than these, 9 q y ) !

the growth could not follow the external forcing. after the firgt fast transient, the Peclet_ number seems to pe
well approximated by the values obtained in steady condi-
tions, with a supercooling corresponding to the instantaneous
actual supercooling. This indicates that a quasisteady ap-
The results of this investigation show that volumetric ef-proximation is a satisfactory approach to interpret the growth
fects can influence constrained crystal growth in a significantlynamics.

IV. CONCLUSIONS
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